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Abstract

The elemental content of a soybean seed is a determined by both genetic and envi-

ronmental factors and is an important component of its nutritional value. The ele-

mental content is chemically stable, making the samples stored in germplasm

repositories an intriguing source of experimental material. To test the efficacy of

using samples from germplasm banks for gene discovery, we analyzed the elemental

profile of seeds from 1,653 lines in the USDA Soybean Germplasm Collection. We

observed large differences in the elemental profiles based on where the lines were

grown, which lead us to break up the genetic analysis into multiple small experi-

ments. Despite these challenges, we were able to identify candidate single nucleo-

tide polymorphisms (SNPs) controlling elemental accumulation as well as lines with

extreme elemental accumulation phenotypes. Our results suggest that elemental

analysis of germplasm samples can identify SNPs in linkage disequilibrium to genes,

which can be leveraged to assist in crop improvement efforts.
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1 | INTRODUCTION

One of the biggest challenges facing agricultural research today is

finding ways to improve crop yield and nutrition while farming in

increasingly erratic climates and on more marginal lands. Throughout

modern agriculture, crops have been bred for maximal yield under

optimal environmental conditions. Farming marginal soils with insuf-

ficient fertilization or irrigation leads to dramatic decreases in crop

yield. In addition, plants grown on marginal soils may exhibit a

reduced nutritional profile, which is an important consideration for

staple crops. To properly address these issues, we need to develop a

more complete understanding of the genetic mechanisms underlying

a plant’s response to various environmental stresses (Baxter &

Dilkes, 2012).

An important aspect underlying a plant’s response to environ-

mental stresses is its ability to regulate mineral nutrients. Apart from

carbon and oxygen, a plant relies entirely on the bioavailable nutri-

ents in the soil in which it is growing for survival. Soil nutrient

bioavailability can vary drastically, not just as a result of soil compo-

sition, but also as a side effect of drought and flood conditions,

changes in soil pH, and changes in the soil microbiome (FAO, 1996).

Understanding the uptake, regulation, transport, and storage of min-

eral nutrients under a variety of environmental conditions is essential

to deciphering the complex relationship between a plant and its

environment.
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Single-seed ionomic profiles have proven both highly heritable

and susceptible to environmental perturbations in maize (Baxter

et al., 2014). This makes the study of the seed ionome a powerful

tool for matching a plant’s genetic characteristics with its response

to environmental perturbations. Both environmental and genetic

properties can effect multiple elements in combination, resulting in

genetic loci that might control different elements in different envi-

ronments (Asaro et al., 2016; Baxter, 2015). Additionally, once col-

lected, apart from the possibility of external contamination, the

elemental content of a seed sample is fixed. Tissue for ionomic anal-

ysis does not need to be specially stored or quickly analyzed after

collection. Conveniently, this allows for the ionomic analysis of

excess tissue collected for other purposes, without the necessity of

a separate field experiment. Here, we demonstrate the utility of

leveraging existing germplasm by performing a genomewide associa-

tion study on ionomic traits in seed tissue measured from diverse

soybean lines selected from the USDA Soybean Germplasm Collec-

tion.

2 | MATERIALS AND METHODS

2.1 | Germplasm

A diverse panel of 1,653 soybean accessions was selected from the

core soybean collection of the USDA Soybean Germplasm Collec-

tion, as described in the results. Because the mission of National

Plant Germplasm System (NPGS) is to maintain a viable collection of

plant germplasm, the collections are periodically regrown to maintain

viable seed. The size of the Soybean Germplasm Collection necessi-

tates that only a subset of the complete germplasm collection is

grown out each year. Furthermore, the diverse panel of accessions

belongs to a variety of maturity groups and was grown out in three

separate locations: Stoneville, MS, Urbana, IL, and Upala, Costa Rica.

The 1,653 lines in the panel are, thus, broken into 13 distinct year

and location sets, with no overlap of lines between years or loca-

tions (Table 1). The Costa Rica dataset had no individual years with

enough lines (>50) to perform a successful association analysis.

However, by creating three additional datasets by combining data

from each location, regardless of year, we were able to analyze data

from the Costa Rica grow-outs.

2.2 | Confirmation grow-outs

Small plots of four low sulfur accumulating lines and six high sulfur

accumulating lines were grown in Mexico silt loam soil at Bradford

Research and Extension Center, Columbia, Missouri. Cultural prac-

tices were typical of those utilized for soybean production in the

Midwest USA. The same set of plants were also grown in environ-

mentally controlled greenhouse in 6 L pots containing PRO-MIX

(Premier Horticulture, Quebec, Canada) medium amended with

Osmocote Classic controlled release fertilizer (Scotts, OH). Green-

house settings were 16-hr day length with 30/18°C day/night tem-

peratures.

Small plots of differential phosphorus lines were grown out in

2012 at South Farm Agricultural Research Center (Columbia, MO,

Latitude 38.908189, Longitude �92.278693, Mexico silt loam soil)

as single plots of 5 feet long with a 3 foot gap between rows and

30 inches between rows. Field conditions were typical of soybean

production in the Midwest USA, with NPK Fertilizer applied at rates

appropriate according to soil analyses (10.6/50/75) and two pre-

emergent herbicides were applied before planting: Authority First

(Authority First Corp, Philadelphia, PA) applied at 6.45 oz/acre, and

Stealth applied at 1 qt/acre (Loveland Products, Loveland, CO, USA).

Postemergent herbicides were also used: Ultra Blazer (UPI, King of

Prussia, PA, USA) applied at 1.5 pt/acre, Basagran (Arysta LifeS-

cience North America, LLC, Cary, NC, USA) applied at 1.5 pt/acre,

and Select Max (Valent Biosciences Corp., Libertyville, IL, USA)

applied at 24 oz/acre. At maturity, plots were bulk harvested and

threshed and a subsample was used for ICP-MS analysis.

2.3 | Ionomic phenotyping by ICP-MS

Samples were phenotyped on two separate occasions for the ele-

mental concentrations for B, Na, Mg, Al, P, S, K, Ca, Mn, Fe, Co, Ni,

Cu, Zn, As, Se, Rb, Mo, and Cd following the analytical methods

described in Ziegler et al. (2013). Seed weight is also recorded for

each sample analyzed, so it was also included as a phenotype in our

study.

A simple weight normalization procedure to correct measured

sample concentrations for seed size was found to introduce artifacts,

especially for elements whose concentration is at or near the

method detection limit. This could either be due to a systematic over

or under reporting of elemental concentrations by the ICP-MS pro-

cedure or a violation of the assumption that all elemental

TABLE 1 Number of lines and markers in each GWAS dataset.
There is no overlap between lines in the datasets. Markers are the
number of segregating SNPs in each dataset, filtered for minor allele
frequency >0.05

Location Grow-out year Lines GWAS markers

Stoneville 1999 104 33962

Stoneville 2004 121 34571

Stoneville 2006 59 35192

Urbana 2000 109 36432

Urbana 2001 69 36032

Urbana 2002 94 36151

Urbana 2003 147 35783

Urbana 2004 89 35490

Urbana 2005 87 35559

Urbana 2006 143 36065

Urbana 2007 98 36091

Urbana 2008 58 35432

Urbana 2009 102 36489

Costa Rica 9 years combined 111 31479

2 | ZIEGLER ET AL.



concentrations scale linearly with weight. We used an alternative

method to normalize for seed weight following the method recently

reported in Shakoor et al. (2016). A linear model was developed

modeling un-normalized seed concentrations against seed weight

and the analytical experiment the seed was run in. The residuals

from this linear model were then extracted and used as the elemen-

tal phenotype. For each element, the phenotypic measurement was

taken as the median of the elemental concentrations from the two

or eight seeds measured from each line (after outlier removal of

measurements with a median absolute deviation of >10 where we

had enough samples). To meet the normality assumptions required

for Genomewide association studies (GWAS), an analysis using the

Box–Cox algorithm was used to determine an appropriate transfor-

mation for each trait (Box & Cox, 1964). As each grow-out has a dis-

tinct set of lines, which may result in different phenotypic

distributions, transformations were performed separately for each

element in each dataset listed in Table 1. Transformations were

selected based upon the 95% confidence interval returned by the

Box–Cox function implemented in the R package MASS (Box & Cox,

1964; Venables, Ripley, & Venables, 2002).

2.4 | Genomewide association studies

All of the lines included in this analysis (and all of the annual acces-

sions in the Soybean Germplasm Collection in 2010) have been

genotyped using the SoySNP50K beadchip and are available at soy-

base.org (Song et al., 2013). Separate genotype files were generated

for each grow-out that contain only the lines present in that grow-

out. The genotype files were each filtered to remove single nucleo-

tide polymorphisms (SNPs) with a minor allele frequency less than

0.05, and missing SNPs were imputed as the average allele for that

SNP. The number of SNPs for each grow-out varied between

31,479 and 36,340. The final number of SNPs used for association

mapping of each grow-out is listed in Table 1. SNPs were called

using the Glyma1.1 reference genome. All SNP base pair locations

reported are from a map to Glyma1.1.

Both kinship and structural components were included in the

mixed model and were calculated using the filtered genotype matrix

containing all 1,391 lines found across all 13 grow-outs. The kinship

matrix was calculated using the VanRaden method as implemented

in GAPIT (Lipka et al., 2012; VanRaden, 2008). To correct for popu-

lation stratification, a principal component analysis was performed.

The first ten principal components were used as fixed effects in the

mixed model.

Association mapping was performed using a multilocus mixed-

model (MLMM) approach that performs a stepwise mixed-model

regression with forward inclusion and backward elimination of geno-

typic markers included as fixed effects (Segura et al., 2012). In this

model, forward steps are performed until the heritable variance esti-

mate reaches 0 (indicating the current model includes covariates that

explain all of the heritable phenotypic variance) or a maximum num-

ber of forward inclusion steps have been performed, which we set

at 40.

Multilocus mixed model implements two model selection meth-

ods to determine the optimal mixed model from the set of stepwise

models calculated: the extended Bayesian information criterion

(EBIC, Chen & Chen, 2008) and the multiple-Bonferroni criterion

(mbonf, Segura et al., 2012). The EBIC model uses the Bayesian

information criteria to select a model taking into account both num-

ber of SNPs in the analysis and number of cofactors in the model. In

our analysis, the EBIC was usually less conservative (e.g. selected lar-

ger models). A larger model likely increases the number of type 1

errors, but it is less likely to miss true associations. Because we are

performing a further selection step comparing results across inde-

pendent experiments, we used the EBIC models for further analysis.

Additionally, we also analyzed the cofactors returned by the final

forward inclusion model (maximum model), which includes either the

maximum 40 cofactors or the total number of cofactors needed to

explain the estimated heritability.

Single nucleotide polymorphisms included as cofactors in either

the EBIC model or the maximum model were compared across

GWAS experiments. SNPs were determined to overlap with a neigh-

boring SNP if it had an r2 LD of >.2.

2.5 | Calculation of linkage disequilibrium

Linkage disequilibrium (LD), expressed as a correlation coefficient

between markers (r2), was calculated using the filtered SNP data set

containing all 1,391 lines from the experiment and the LD function

of the “genetics” R package (Warnes, Gorjanc, Leisch, & Man, 2013).

2.6 | Germplasm and data availability

Lines used can be found at the USDA Soybean Germplasm Center.

All scripts and data used can be found at www.ionomicshub.org and

https://github.com/baxterlab/SoyIonomicsGWAS.

3 | RESULTS

3.1 | Experimental design

The mission of the USDA-ARS NPGS is “to acquire, evaluate, pre-

serve, and provide a national collection of genetic resources to

secure the biological diversity that underpins a sustainable U.S. agri-

cultural economy.” Some of these collections are the target for high-

density genotyping projects making them ideal populations for

GWAS. However, the prohibitive cost of controlled field trials to

measure novel phenotypes can limit their utility for genetics

research. In this experiment, we used existing germplasm to find

novel genotype–phenotype associations without the expensive over-

head of independent field trials. Although this experiment is limited

by the inability to grow plants in a common environment, the high

heritability of ionomic traits (Baxter et al., 2014), as well as the sta-

bility of the ionome in stored tissue (Baxter et al., 2014), makes

ionomic phenotyping an ideal test case for mining germplasm

resources. To test the power of ionomics to find genetic factors
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underpinning elemental accumulation, we analyzed seeds from 1,653

soybean [Glycine max (L.) Merr.] lines representing the diversity

found in the USDA Soybean Germplasm Collection stored at Urbana,

IL.

A core collection of 1,685 accessions of the USDA Soybean

Germplasm Collection represents a substantial amount of the genetic

diversity in the entire collection. The core collection contains

approximately 10% of the total number of introduced soybean

accessions. The 1,653 soybean lines used in this study comprised all

of the 1,685 accessions available when the research was started. For

accessions in maturity groups 000 through VIII for which field evalu-

ation data were available, the core was selected using origin, qualita-

tive, and quantitative data. Accessions were divided into groups

based on origin and then further subdivided based on maturity

group, which classifies soybean accessions based on photoperiod

and temperature response. A total of 81 strata were established. A

multivariate proportional sampling strategy within each stratum was

determined to be the optimal procedure for identifying a sample of

accessions that best represents the diversity of the total collection.

Field evaluation data were not available for accessions in maturity

groups IX and X, but because these accessions are adapted to sub-

tropical and tropical conditions and are likely to have unique genetic

diversity, a sample of 10% of these accessions was added to the

core collection based on multivariate analysis of the qualitative data.

A full explanation of the development of the core collection can be

found in Oliveira, Nelson, Geraldi, Cruz, and de Toledo (2010). The

seeds available in the NPGS for this core collection come from

grow-outs that span 12 years at three locations (Urbana, IL, Stone-

ville, MS, and Upala, Costa Rica) (Table 1). The selection of which

lines to grow for line maintenances in a given year is independent of

the strata used to select the core collection, making each grow-out

year an independent experiment to look for loci controlling elemen-

tal accumulation. Additionally, analysis of the first two principal com-

ponents from the SNP dataset shows no apparent bias between

genetic architecture and grow-out (Figure S1).

3.2 | Phenotypes

Using the elemental analysis pipeline described in Ziegler et al.

(2013, see methods), we analyzed ~6 seeds from each line, measur-

ing the levels of 20 elements in each seed (Table S1). While 1,653

lines were analyzed in total, 262 of these lines were from grow-outs

containing fewer than 50 lines in the dataset. We excluded these

lines from further analysis, and all following analyses are based on

the remaining 1,391 lines (elemental profiles for excluded lines are

included in the Table S1). We performed an ANOVA significance

test to assess whether there are significant environmental effects on

the phenotypic data gathered from lines grown in separate locations

and in separate years at the same location. Although a distinct set of

lines were grown in each grow-out, lines were assigned to a grow-

out without regard to population structure. As a result, we would

expect, in the absence of environmental effects, phenotypic mea-

surements to be similar. The ANOVA test indicates a significant

location effect, and for Stoneville and Urbana, significant effects for

growth year, for most elements measured (p < .01 with Bonferroni

correction, Table 2). This effect can also be seen in the phenotypic

distribution (before transformation) for many of the traits (Figures 1

and S2). These results clearly demonstrate that most of the year

grow-outs were unique environments, supporting their analysis as

individual experiments. The lack of significant differences by year for

many elements in Costa Rica (13 of 21) may be indicative of a lack

of statistical power due to the small number of lines grown per year.

Because there were not enough lines in any one grow-out from

Costa Rica for a GWAS analysis, the only way we were able to ana-

lyze the Costa Rica data was by combining data across all 10 years.

Comparison of elemental concentrations of replicate seeds from

the same line in each grow-out does indicate the presence of a

genotypic effect on elemental concentrations. Concentrations in

seeds from the same line were usually more similar to each other

than they were to the population as a whole (Figures 2 and S3).

The Box–Cox procedure (Box & Cox, 1964) was used to estimate

appropriate transformation functions for the phenotype data to meet

the assumptions of GWAS for normally distributed dependent vari-

ables. The Box–Cox algorithm suggested that 138 of the 294 traits

(14 environments 9 21 phenotypes) needed no transformation and

an additional 151 needed only minor transformations to control for

the long-tail distributions often seen in concentration data (inverse,

inverse square root, log, or square root) (Table S2). Because most

traits appear to only need minor transformations, for uniformity and

ease of interpretation, all of the traits in which a transformation was

recommended were transformed using a log transformation.

3.3 | Population structure

The first two principal components obtained using the 36,340 poly-

morphic SNPs from the entire 1,391 lines in the dataset explained

15% of the total SNP variance, and the first 10 principal components

explained 28% of the total variance. Variance explained by each PC

drops rapidly after the first 10 PCs with 50% variance not reached

until PC76. The first two principal components separate the popula-

tion into groups roughly corresponding to each lines country of ori-

gin, with South Korean and Japanese accessions forming distinct

clades while Chinese, Russian, and other accessions form a much

less cohesive block (Figure 3).

3.4 | MLMM GWAS

Using the SoySNP50k chip data (Song et al., 2013), we performed a

GWAS study using a MLMM to identify associated loci for each of

21 phenotypes (20 elements, seed weight) in 13 distinct grow-outs

of diverse soybean lines and the Costa Rica dataset of grow-outs

pooled across years (Table 1). The MLMM procedure starts with an

EMMAX scan of all markers and then iteratively adds the markers

with the highest association eith the model and rescans. The MLMM

procedure returns a list of cofactors that together describe the total

estimated narrow-sense heritability of a given trait (which we will

4 | ZIEGLER ET AL.



refer to as the all cofactor model). By definition, MLMM will create

a model containing at least one cofactor for each trait. Of the mod-

els generated, 84 models met the stopping criteria after only one

SNP was added to the model. The average model contained 11

SNPs, with no traits reaching the maximum 40 SNP model (e.g. not

converging on a model describing all of the phenotypic variance).

F IGURE 1 Molybdenum accumulation
in single soybean seeds (mg/kg) across
experimental grow-outs

TABLE 2 Analysis of grow-out location and year effect on elemental accumulation. The p-value for each element from an ANOVA of a
linear model with Location or Location 9 Year interaction. The significance cutoff was set at p < .01 with Bonferroni correction

Element Location Costa Rica 3 Year Stoneville 3 Year Urbana 3 Year

Seed Weight NS NS 6.87E-07 0.0001776

B 0.0001174 NS 1.24E-07 NS

Na 3.06E-307 NS NS NS

Mg 0.0003425 5.24E-08 7.19E-09 2.19E-29

Al 9.17E-31 8.70E-13 2.62E-11 3.56E-36

P 5.72E-27 1.26E-05 NS 3.29E-16

S 6.49E-34 NS 3.58E-10 6.23E-35

K 2.37E-24 1.16E-05 1.46E-07 2.12E-06

Ca 1.63E-19 NS 6.78E-13 1.17E-26

Mn 9.80E-45 0.0003116 3.03E-15 1.53E-17

Fe 7.12E-29 NS 8.44E-09 2.36E-34

Co 3.42E-148 NS 1.10E-19 3.65E-12

Ni 3.04E-173 5.90E-13 5.75E-06 2.37E-33

Cu 1.33E-243 NS 1.05E-14 1.40E-29

Zn 1.34E-145 NS 6.38E-08 9.29E-30

As 1.66E-57 NS 5.50E-12 NS

Se 0 0.0001141 1.13E-16 2.23E-14

Rb 0 4.39E-08 6.75E-44 2.17E-15

Sr 0 NS 7.59E-06 3.34E-18

Mo 0 NS 3.68E-40 6.66E-44

Cd 3.25E-45 NS 5.48E-26 3.79E-07

NS, not significant.
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The largest model contained 29 SNPs, for iron in the 2009 Urbana

grow-out. The 294 GWAS tests returned 1,756 unique SNPs. While

these most complex models likely contain factors that account for

phenotypic variance merely by chance (e.g. false positives), many of

these cofactors are likely real.

A simpler model, which includes only a subset of the total cofac-

tors, can be selected using a model selection parameter (Segura

et al., 2012). Segura et al. (2012) proposed two model selection cri-

teria: the EBIC and the multiple-Bonferroni criterion (mBonf).

Although both criteria produced generally similar results, we found

F IGURE 2 Distribution of cadmium
phenotype (linear model residuals, see
Methods) in lines from a single grow-out:
Stoneville, MS, 1999. Lines are ordered by
median of between two and eight seed
replicates

F IGURE 3 Principal component analysis
of the genotypes of 1,391 soybean lines.
Colored by country of origin: China (532),
Japan (267), South Korea (200), Russia
(61), other, or unknown country of origin
(331)

6 | ZIEGLER ET AL.



the EBIC criteria to be less stringent than mBonf. Due to the rela-

tively small sample size in many of our grow-outs, we have chosen

the more inclusive EBIC criteria in an attempt to include more mod-

erate effect loci in our model at the cost of a higher false positive

rate. QQ-plots for both the null model, containing no cofactors, and

the optimal EBIC model were generated to assess whether there

were uncontrolled confounding effects in our model arising from

cryptic relatedness and population structure. While there was some

inflation of p-values in the null model, the MLMM procedure of iter-

atively including large-effect loci into the model successfully controls

for this p-value inflation and the distribution of p-values in the EBIC

models closely follows the expected null distribution except for the

significantly associated loci (Figures 4 and S4).

The EBIC model selection method returned the MLMM model

containing no cofactors for about half of the GWAS tests (164/294).

The remaining 130 tests returned a total of 573 unique SNPs. When

looking at the combined set of SNPs returned across all grow-outs,

of the 21 phenotypes tested, at least one SNP was returned for

each trait, with seed weight returning the most (96) and boron

returning the least (6). Table 3 contains information about the num-

ber of cofactors returned in each model (EBIC and all) for each trait,

and Table S3 contains the complete list of SNPs returned.

Overall, despite a large number of tests for association (294), a

relatively small number of SNPs were identified. Given the ability of

the multi cofactor model to reduce the levels of spurious false posi-

tives, a large number of even the full model SNPS are likely to be

real. However, given the large number of independent grow-outs

and the partial independence of the elemental traits, we are able to

apply more stringent criteria confidence in associations. Below, we

list several sets of SNPs associated with elemental traits, ordered

from “most confident” to “lower confidence.” As the likelihood of

the same false associations being found more than once for the

same trait in separate grow-outs with independent sets of lines is

small, we looked for SNPs returned in multiple scans, which are

likely to be real. Across these 130 experiments, 10 SNPs were

returned more than once. Of these 10 SNPs, the exact same SNP

was found for the same element in a different grow-out two times

(ss715604985 and ss715605104, both for cadmium), different ele-

ments in the same grow-out once (ss715608340 for Ca and Sr), and

different elements in different grow-outs seven times (Table 4). The

same element/multiple location and multiple element/same location

SNPs constitute our highest confidence set for SNPs affecting the

ionome, but likely greatly underestimate the useful information in

the dataset.

Because each grow-out contains an independent set of lines, the

set of SNPs tested differs between grow-outs depending upon the

SNP minor allele frequency in each dataset. Additionally, common

SNPs between grow-outs will still differ in allele frequency, which

could result in neighboring SNPs, still in LD with the causal variant,

being returned for different GWAS experiments. Therefore, looking

for only exact overlaps between datasets may be overly restrictive.

Soybean has been estimated to have a LD decay distance of

between 360 Kbp in euchromatic regions and 9.6 Mbp in hete-

rochromatic regions (Hwang et al., 2014). To better search for over-

laps between our datasets while also taking into account the large

variability in LD range across the soybean genome, we grouped all

of the SNPs returned across experiments by whether they are in LD

with one another. Although many factors affect the ability to detect

an association between a QTL and the actual causative loci, the min-

imal r2 for detection between the loci is generally estimated to be

between 0.2 and 0.33 (Ardlie, Kruglyak, & Seielstad, 2002; Qanbari

et al., 2010; Wallace et al., 2014) with a value of 0.2 previously

being used to define LD range in the soybean genome (Hwang et al.,

2014). Therefore, we defined an overlap between SNPs as whether

a pair of SNPs has an r2 > .2. When this approach was applied to

the all cofactors model, the same locus was returned for the same

phenotype in different grow-outs 18 times, a different phenotype in

the same grow-out 44 times, and different phenotypes in different

grow-outs 237 times (Table S4). Often a SNP returned as significant

in the EBIC model for one grow-out, will have a corresponding SNP

in the all cofactor model of another grow-out, indicating that the sig-

nal is there in other populations, but at too weak a level to meet

strict significance thresholds.

Another line of evidence that the SNPs identified are real is the

co-location with candidate genes. Due to the large regions of LD in

the soybean genome, each of the 30,000 SNPs in our experiment is

linked to dozens to hundreds of genes. Many plant processes,

including root structure/function, water relations, and inter-, intra-

and extra-cellular structures, can alter the elemental accumulation

F IGURE 4 Quantile–quantile plot of the observed p-values
against expected p-values from the GWAS analysis for sulfur
accumulation. The MLMM algorithm includes cofactors that reduce
inflation of p-values (green line). The model without cofactors
indicates presence of p-value inflation (blue line). The expected
distribution of p-values under the null hypothesis (red line)
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(Barberon, 2017; Baxter et al., 2009; Chao et al., 2011, 2013; Tian

et al., 2010). Each SNP is therefore likely to be associated with sev-

eral plausible candidate genes. We looked under the SNPs of our

overlap sets for strong candidates—those with orthologs associated

directly with elemental phenotypes. Table 5 contains a list of SNPs

found on or near candidate or already characterized genes. Many of

the candidates are under SNPs associated with individual elements

to which they or their orthologs were previously linked, or with

chemically related elements (i.e. Mn, Co, Cd with Fe, or Se with S).

The presence of these strong candidates under the detected SNPS

supports the evidence from overlap that they are real associations.

3.5 | Verification of high and low sulfur and
phosphorus accumulating lines

To test whether the elemental accumulation of ionomic traits in the

lines in our panel is intrinsic to the genetics of the lines or an artifact

of the environmental and field conditions, we performed two experi-

ments in which we selected the highest and lowest accumulating

lines for sulfur and phosphorus and regrew the seeds in controlled

field and greenhouse conditions. Eight lines, four with a high phos-

phorus phenotype and four with a low phosphorus phenotype, were

selected for regrowth in a field in Columbia, MO. Three of the four

high phosphorus lines exhibited a high phosphorus phenotype in the

regrow experiment, while the low phosphorus lines had phenotypes

closer to the control line level (Figure 5 and Table 6). Broad-sense

heritability for phosphorus between the GRIN grow-out concentra-

tions and this experiment was 0.65 (Table S5).

In a separate experiment, 10 lines total, four low sulfur accumu-

lating lines and six high sulfur accumulating lines, were selected and

regrown in both a field and greenhouse trial. In both the field and

the greenhouse experiment, all of the six high sulfur lines had a

higher sulfur accumulation than the four low accumulating lines.

Interestingly, the field grown varieties had a larger difference in sul-

fur accumulation between the high and low varieties (Figure 5 and

Table 7). Although not selected for accumulation of other elements,

there was also a correlation between measured values in the germ-

plasm collection and the regrow set for many other elemental phe-

notypes tested (Figures S5 and S6). Broad-sense heritability for

sulfur between the GRIN grow-out concentrations, the greenhouse,

and the field grow-outs was 0.64 (Table S5).

4 | DISCUSSION

Analysis of ionomic traits has led to a deeper understanding of the

complex regulatory system organisms use to maintain homeostasis

of essential elements (Atwell et al., 2010; Baxter, 2010; Baxter et al.,

2008; Yu et al., 2012). To broaden our understanding of how genetic

and environmental components affect the ionome, we have

TABLE 4 SNPs returned in the EBIC selected model in two or more grow-outs

Chromosome Base pair Environment Trait logP Model Overlap type

9 4612586 99S Cd 10.06 EBIC Same element, different location

9 4612586 04U Cd 5.39 EBIC Same element, different location

9 4991159 00U Cd 18.68 EBIC Same element, different location

9 4991159 02U Cd 18.95 EBIC Same element, different location

9 4991159 03U Cd 11.88 EBIC Same element, different location

9 4991159 06U Cd 6.77 EBIC Same element, different location

10 5863544 04S Ca 6.20 EBIC Different element, same location

10 5863544 04S Sr 7.68 EBIC Different element, same location

2 46468030 03U Seed weight 11.73 EBIC Different element, different location

2 46468030 05U Se 29.18 EBIC Different element, different location

5 41315343 06S Mg 4.82 EBIC Different element, different location

5 41315343 09U Mo 4.58 EBIC Different element, different location

10 5179735 05U S 5.73 EBIC Different element, different location

10 5179735 06S Ni 7.36 EBIC Different element, different location

13 19554349 07U Ni 6.66 EBIC Different element, different location

13 19554349 09U Ca 18.06 EBIC Different element, different location

13 22047323 02U Cd 14.82 EBIC Different element, different location

13 22047323 06S K 5.59 EBIC Different element, different location

13 26504428 00U Cd 6.30 EBIC Different element, different location

13 26504428 03U Seed weight 10.48 EBIC Different element, different location

19 84371 08U Cu 16.51 EBIC Different element, different location

19 84371 09U Fe 51.76 EBIC Different element, different location

ZIEGLER ET AL. | 9



developed a high-throughput ionomic phenotyping system that can

rapidly measure 20 ionomic traits and seed weight in agronomically

important crops, such as soybean, maize, sorghum, and cotton. To

assess the utility of our phenotyping system for GWAS in soybean,

we measured the ionome of a diverse set of more than 1,300 soy-

bean lines, divided into 14 independent populations grown in three

locations over the course of a decade. Coupled with a high-resolution

genetic map (Song et al., 2013), we performed a genomewide

association study using a multilocus mixed-model procedure (Segura

et al., 2012). We were also able to show that lines selected from

these experiments for extreme phenotypes of elemental accumulation

were likely to display similar phenotypes in follow-up experiments.

In spite of the limited number of lines in each grow-out, one of

the strengths of this study is the number of distinct field replica-

tions. Although there was no overlap between lines for any of the

14 grow-outs, we found many genetic interactions that were robust

TABLE 5 Returned SNPs overlapping candidate or already characterized genes. Bold font indicates lines returned in the more conservative
EBIC model for at least one grow-out. SNP basepairs are mapped to soybean reference genome build Glyma1.1

Chromosome

Base pair
(of most
significant
SNP) Environment(s) Trait(s)

�logP
(of most
significant
SNP) Candidate gene

9 4991159 00U; 02U; 03U; 06U Cd 18.95 HMA13; Glyma.09g055600 (Benitez et al., 2012; Fang et al., 2016)

2 43023030 99S;CR Cd 20.67 Glyma.02g215700 is similar to At2-MMP, which is induced during

cadmium stress to leaves (Golldack, Popova, & Dietz, 2002)

3 40883820 02U; 99S Se 21.15 NRAMP metal transporter (Glyma.03g181400); aluminum sensitive

3 (ALS3; Glyma.03g175800)

5 33737561 CR; 09U Ca 36.24 Multidrug resistance-associated protein 3 (MRP3,

Glyma.05g145000); AtMRP5 implicated in calcium homeostasis in

Arabidopsis (Gaillard, Jacquet, Vavasseur, Leonhardt, & Forestier,

2008)

14 47003645 06S; 03U Co 17.91 ZIP metal ion transporter (Glyma.14g196200); overlaps with a Zn

and rubidium (in all cofactor)

15 410656 04S; 07U Mn 7.11 CAX2 (Glyma.15g001600), implicated in Mn transport (Shigaki,

Pittman, & Hirschi, 2003); NRAMP6 (Glyma.15g003500), Mn

transport; MGT2 (Glyma.15g002700) and MGT4

(Glyma.15g005200), magnesium transport

2 5555909 07U Fe; Zn; P; Cu 6.91 ATOX1 (Glyma.02g068700), copper transport

1 54551283 01U; CR; 00U; 04U Al; Rb; Mo; Co; K 7.64 ALMT (Glyma.01g223300), aluminum-activated malate transport,

malate is a chelator for aluminum and critical in detoxification

2 44460357 09U; 02U Co; Ca 10.96 Heavy metal transport/detoxification (Glyma.02g222600,

Glyma.02g222700); potassium transporter 1 (Glyma.02g228500);

phosphate transporter 4;3 (Glyma.02g224200)

3 5165511 09U; 06U Fe; Mn 36.05 YSL6 (Glyma.03g040200); FPN1 ferroportin (Glyma.03g042500)

7 5480577 06S; 06U As; Ni 22.46 Heavy metal transport/detoxification (Glyma.07g065800);

NRAMP2 (Glyma.07g058900)

11 17367460 04U; 06U Fe; Se 21.13 ABC transporter (Glyma.11g194700, Glyma.11g196100)

19 84371 08U; 09U Cu; Fe 51.76 ATOX1 (Glyma.19g001000), copper transport

3 5455217 00U; 04U Mg; Co 7.45 Iron regulated 1 (Glyma.03g042500); iron regulated 2

(Glyma.03g042400); YSL6 (Glyma.03g040200)

15 1222084 05U Se 29.64 Sulphate transporter (Glyma.15g014000) (Cabannes, Buchner,

Broadley, & Hawkesford, 2011; El Kassis et al., 2007); sulfite

transporter (Glyma.15g015600)

9 4799335 06S K 4.31 Potassium transporter (Glyma.09g052700)

7 5900018 06U Fe 5.07 Overlap with IDC for FRO2 (Mamidi et al., 2014);

Glyma.07g067700; also Glyma.07g065800 a heavy metal detox

9 4518093 09U Mo 17.96 Molybdenum cofactor sulfurase (Glyma.09g050100)

9 3807440 09U S 31.98 Glyma.09g045200 heavy metal transport; close to all cofactor

selenium

5 8074553 00U; 06S Fe 7.06 Stabilizer of iron transporter (AGO10, PNH, ZLL;

Glyma.05g011300), in IDC dataset (Mamidi et al., 2014)

3 45338714 03U Fe 8.30 NAS3; Glyma.03g231200; overlaps IDC (Mamidi et al., 2014)
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across environments and genotypes. We report several different sets

of SNPs corresponding to different levels of stringency in the indi-

vidual experiments and the way we compared results between the

experiments. These range from the 1,756 SNPs from the full models,

which likely contain several false positive associations, to the two

SNPs that were returned in multiple experiments for the same ele-

ment. Hundreds of SNPs in the total dataset are likely to be real due

to their inclusion in a more conservative model or due to being

found in several locations once LD is taken into account. Several of

these mapped directly to what could be considered a priori candi-

date genes that have either already been characterized in soybean

or are close orthologs of metal homeostasis proteins in Arabidopsis

thaliana and other species (Table 5). The discovery of orthologs of

known Arabidopsis genes in soybean experiments highlights the value

of studies in model organisms, where the genetics and growth habits

are more amenable to large scale studies. Many more overlaps

between different phenotypes found in different locations suggest

genetic by environmental effect on which phenotype is affected by

F IGURE 5 Confirmation grow-out of
high and low sulfur and phosphorus
accumulating lines. (a) Regrow versus
original concentration of eight lines
selected for high and low phosphorus
accumulation. Correlation between GRIN
concentration and regrow was 0.24. (b)
Regrow versus original concentration of 10
lines selected for high and low sulfur
accumulation, regrown in both greenhouse
and field environments. Error bars indicate
the standard error of the replicate seeds.
Correlation (r2) between GRIN seed
concentrations and the regrown high and
low varieties grown in the greenhouse and
in the fields were 0.61 and 0.84,
respectively
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a causal locus. Many of the SNPs which overlap across environments

are novel associations with no obvious gene candidates and are

strong candidates for follow-up studies to determine their relation-

ship to plant nutrient homeostasis.

The strongest element-loci association in our study was for the

cadmium phenotype, which is associated with a gene that codes for

HMA13, a P1B-ATPase (HMA13; Glyma.09g055600) previously

implicated in seed cadmium concentration in soybean (Benitez,

Hajika, & Takahashi, 2012). A previous GWAS study on iron defi-

ciency chlorosis found seven loci strongly associated with the dis-

ease phenotype (Mamidi, Lee, Goos, & McClean, 2014). Our analysis

returned three of the seven loci found in that study, all associated

with seed Fe, including the two strongest associations from the IDC

panel: a locus associated with nicotianamine synthase 3 (NAS3; Gly-

ma.03g231200) and a locus associated with a stabilizer of iron trans-

porter (AGO10; Glyma.05g011300). If gene discovery of small-to-

medium effect loci is the goal of a study, using samples from germ-

plasm banks may not be appropriate, but even with all the caveats

about statistical power and gene by environment interactions, we

found loci that had strong candidates for some elements. These

results could be used to prioritize genes and lines for further charac-

terization experiments.

5 | CONCLUSION

Using state-of-the-art association mapping techniques, we were able

to use the data we collected using our high-throughput ionomic phe-

notyping pipeline to identify both lines with extreme phenotypes

and loci associated with elemental traits. Many of these associations

were strong enough to occur across a diverse set of environmental

conditions, while others were found in only one of the environments

tested. While there are likely many more associations in our GWAS

dataset that we have not yet explored, this experiment serves as a

proof of concept of using stored seed to perform GWAS on ionomic

traits. While our efforts were focused on the identification of mark-

ers associated with elemental traits, the SNPs identified were associ-

ated with many a priori candidate genes. The use of seeds as the

phenotyped tissue allows for the direct association of the conse-

quences of allelic difference of SNPs and associated candidate genes

TABLE 6 Accessions chosen for validation of phosphorus accumulation. High and low phosphorus accumulating lines were chosen to
regrow to test the reproducibility of ionomic traits. Values listed in the table are mg phosphorus/kg tissue

Accession

Regrow
phosphorus
(mg/kg)

Regrow
phosphorus
standard error

Regrow number
of seeds tested

Collection
phosphorus

Collection
phosphorus
standard error

Collection
number of
seeds tested Phosphorus level

PI081042-1 5,464.77 127.08 12 4,149.66 109.15 5 Low

PI424159B 5,965.40 160.35 12 4,305.02 168.68 5 Low

PI475822B 5,830.14 179.63 11 5,819.22 335.34 6 Low

PI567691 6,121.47 186.62 11 6,001.76 372.65 6 Low

PI086081 6,665.44 123.66 12 8,280.90 123.01 6 High

PI423813 7,100.48 198.13 14 8,421.17 481.09 6 High

PI089772 6,432.51 130.76 12 8,785.44 300.08 6 High

PI567721 5,622.10 193.65 12 9,602.50 504.11 5 High

TABLE 7 Accessions chosen for validation of sulfur accumulation. High and low sulfur accumulating lines were chosen to regrow to test the
reproducibility of ionomic traits. Values listed in the table are mg sulfur/kg tissue

Accession

Regrow
field sulfur
(mg/kg)

Regrow field
standard error

Regrow field
number of
seeds tested

Regrow
greenhouse
sulfur (mg/kg)

Regrow
greenhouse
standard error

Regrow
greenhouse
number of
seeds tested

Collection
sulfur (mg/kg)

Collection
sulfur
standard
error

Collection
number of
seeds tested

Sulfur
level

PI096322 3,674.77 82.01 6 3,303.99 86.76 6 2,694.52 75.46 7 Low

PI229327 3,183.07 69.30 6 NA NA NA 2,764.57 62.35 7 Low

PI507411 3,190.73 26.38 4 3,126.35 84.73 6 2,797.00 67.14 8 Low

PI603599A 3,584.44 48.23 6 3,075.94 114.71 8 2,874.06 64.85 8 Low

PI603162 4,336.25 45.05 6 3,703.22 70.82 6 3,771.84 71.02 8 High

PI339734 4,856.20 158.22 6 4,875.50 68.81 4 3,774.48 21.99 2 High

PI437377 4,728.93 112.23 6 3,413.30 82.30 6 3,847.54 82.38 7 High

PI603910B 4,301.96 64.81 5 4,074.24 80.70 5 3,925.33 71.42 8 High

PI082278 4,703.29 51.39 5 4,265.62 99.98 6 3,929.56 117.16 7 High

PI424078 NA NA NA 4,791.33 187.03 5 4,245.06 78.57 5 High
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with traits that affect the tissue with the most agronomic impor-

tance in soybeans. While planned experiments with more replication

and higher numbers of lines will always have more power to identify

genetic and environmental factors driving elemental accumulation in

the seed, this study demonstrates the utility of leveraging available

samples to screen germplasm.
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